西亚试剂:Therapeutic antibody targeting of individual Notch receptor
发布时间:2025-10-24
Therapeutic antibody targeting of individual Notch receptors
Yan Wu1,9, Carol Cain-Hom2,9, Lisa Choy2, Thijs J. Hagenbeek2, Gladys P. de Leon7, Yongmei Chen1, David Finkle4, Rayna Venook4, Xiumin Wu5, John Ridgway5, Dorreyah Schahin-Reed6, Graham J. Dow2,10, Amy Shelton2, Scott Stawicki1, Ryan J. Watts6, Jeff Zhang8, Robert Choy8, Peter Howard8, Lisa Kadyk8, Minhong Yan5, Jiping Zha3, Christopher A. Callahan3, Sarah G. Hymowitz7 & Christian W. Siebel2
1. Department of Antibody Engineering,
2. Department of Molecular Biology,
3. Department of Pathology,
4. Department of Translational Oncology,
5. Department of Tumor Biology and Angiogenesis,
6. Department of Neurodegeneration,
7. Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
8. Exelixis Inc., 210 East Grand Avenue, PO Box 511, South San Francisco, California 94083-0511, USA
9. These authors contributed equally to this work.
10. Present address: Department of Biology, Stanford University, Stanford, California 94305, USA.
The four receptors of the Notch family are widely expressed transmembrane proteins that function as key conduits through which mammalian cells communicate to regulate cell fate and growth1, 2. Ligand binding triggers a conformational change in the receptor negative regulatory region (NRR) that enables ADAM protease cleavage3, 4 at a juxtamembrane site that otherwise lies buried within the quiescent NRR5, 6. Subsequent intramembrane proteolysis catalysed by the γ-secretase complex liberates the intracellular domain (ICD) to initiate the downstream Notch transcriptional program. Aberrant signalling through each receptor has been linked to numerous diseases, particularly cancer7, making the Notch pathway a compelling target for new drugs. Although γ-secretase inhibitors (GSIs) have progressed into the clinic8, GSIs fail to distinguish individual Notch receptors, inhibit other signalling pathways9 and cause intestinal toxicity10, attributed to dual inhibition of Notch1 and 2 (ref. 11). To elucidate the discrete functions of Notch1 and Notch2 and develop clinically relevant inhibitors that reduce intestinal toxicity, we used phage display technology to generate highly specialized antibodies that specifically antagonize each receptor paralogue and yet cross-react with the human and mouse sequences, enabling the discrimination of Notch1 versus Notch2 function in human patients and rodent models. Our co-crystal structure shows that the inhibitory mechanism relies on stabilizing NRR quiescence. Selective blocking of Notch1 inhibits tumour growth in pre-clinical models through two mechanisms: inhibition of cancer cell growth and deregulation of angiogenesis. Whereas inhibition of Notch1 plus Notch2 causes severe intestinal toxicity, inhibition of either receptor alone reduces or avoids this effect, demonstrating a clear advantage over pan-Notch inhibitors. Our studies emphasize the value of paralogue-specific antagonists in dissecting the contributions of distinct Notch receptors to differentiation and disease and reveal the therapeutic promise in targeting Notch1 and Notch2 independently.
- 以上资料由西亚试剂:http://www.xiyashiji.com/ 提供此产品的详细信息如密度,含量,分子式,分子量等均可在西亚官网查询
- 相关产品如汞乙酸汞氯化汞氧化汞碘化汞硫酸汞硝酸汞溴化汞硝酸亚汞氯化亚汞乙酸苯汞碘化汞钾硫氰酸汞氯化氨基汞三氯生三氯氧磷三氯乙烯水合氯醛三氯化磷三氯化钌三氯化钛三氯化铱三氯化铑三氯硫磷三氯乙烷三氯甲烷三氯卡班TCC1,3,5-三氯苯1,2,4-三氯苯1,2,3-三氯苯无水氯化铝三氯乙酸酐三氯乙酸钠碘甲烷二碘甲烷三碘甲烷 三氟碘甲烷硫酸二甲酯氯磺酸苯硫酚苯硫酚钠3-氨基苯硫酚2,6-二氯苯硫酚2,4-二氯苯硫酚2,5-二氯苯硫酚2-甲氧基苯硫酚2-氯乙醇 等均有销售.欢迎订购
下一篇:西亚试剂:eIF2的翻译抑制作用



鲁ICP备20015914号-4