西亚试剂:Reactive oxygen species prime Drosophila haematopoietic pro
发布时间:2025-05-23
Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation
Edward Owusu-Ansah1,5 & Utpal Banerjee1,2,3,4
1 Department of Molecular, Cell and Developmental Biology,
2 Molecular Biology Institute,
3 Department of Biological Chemistry,
4 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California 90095, USA
5 Present address: Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
6 Correspondence to: Utpal Banerjee1,2,3,4 Correspondence and requests for materials should be addressed to U.B.
Reactive oxygen species (ROS), produced during various electron transfer reactions in vivo, are generally considered to be deleterious to cells1. In the mammalian haematopoietic system, haematopoietic stem cells contain low levels of ROS. However, unexpectedly, the common myeloid progenitors (CMPs) produce significantly increased levels of ROS2. The functional significance of this difference in ROS level in the two progenitor types remains unresolved2, 3. Here we show that Drosophila multipotent haematopoietic progenitors, which are largely akin to the mammalian myeloid progenitors4, display increased levels of ROS under in vivo physiological conditions, which are downregulated on differentiation. Scavenging the ROS from these haematopoietic progenitors by using in vivo genetic tools retards their differentiation into mature blood cells. Conversely, increasing the haematopoietic progenitor ROS beyond their basal level triggers precocious differentiation into all three mature blood cell types found in Drosophila, through a signalling pathway that involves JNK and FoxO activation as well as Polycomb downregulation. We conclude that the developmentally regulated, moderately high ROS level in the progenitor population sensitizes them to differentiation, and establishes a signalling role for ROS in the regulation of haematopoietic cell fate. Our results lead to a model that could be extended to reveal a probable signalling role for ROS in the differentiation of CMPs in mammalian haematopoietic development and oxidative stress response.
- 以上资料由西亚试剂:http://www.xiyashiji.com/ 提供此产品的详细信息如密度,含量,分子式,分子量等均可在西亚官网查询
- 相关产品如汞乙酸汞氯化汞氧化汞碘化汞硫酸汞硝酸汞溴化汞硝酸亚汞氯化亚汞乙酸苯汞碘化汞钾硫氰酸汞氯化氨基汞三氯生三氯氧磷三氯乙烯水合氯醛三氯化磷三氯化钌三氯化钛三氯化铱三氯化铑三氯硫磷三氯乙烷三氯甲烷三氯卡班TCC1,3,5-三氯苯1,2,4-三氯苯1,2,3-三氯苯无水氯化铝三氯乙酸酐三氯乙酸钠碘甲烷二碘甲烷三碘甲烷 三氟碘甲烷硫酸二甲酯氯磺酸苯硫酚苯硫酚钠3-氨基苯硫酚2,6-二氯苯硫酚2,4-二氯苯硫酚2,5-二氯苯硫酚2-甲氧基苯硫酚2-氯乙醇 等均有销售.欢迎订购
上一篇:西亚试剂:耳腊提供了鲸在一生中接触的污染物的见解
下一篇:河南三门峡发现1.07亿吨大油田