西亚试剂:Structure and hydration of membranes embedded with voltage-
发布时间:2025-12-27
Structure and hydration of membranes embedded with voltage-sensing domains
Dmitriy Krepkiy1,8, Mihaela Mihailescu2,5,8, J. Alfredo Freites2,3, Eric V. Schow4, David L. Worcester2,5,6, Klaus Gawrisch7, Douglas J. Tobias3, Stephen H. White2,5 & Kenton J. Swartz1
1 Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
2 Department of Physiology and Biophysics, and Center for Biomembrane Systems,
3 Department of Chemistry and Institute for Surface and Interface Science,
4 Department of Physics and Astronomy and Institute for Genomics and Bioinformatics, University of California, Irvine, California 92697, USA
5 NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
6 Biology Division, University of Missouri, Columbia, Missouri 65211, USA
7 Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, USA
8 These authors contributed equally to this work.
Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1–S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1–S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field.
- 以上资料由西亚试剂:http://www.xiyashiji.com/ 提供此产品的详细信息如密度,含量,分子式,分子量等均可在西亚官网查询
- 相关产品如溴化汞硝酸亚汞氯化亚汞乙酸苯汞氯化钾汞 碘化汞钾硫氰酸汞硫酸亚汞氧化汞氯化汞碘化汞硝酸汞三氯氧磷三氯化磷碘甲烷二碘甲烷三碘甲烷三氟碘甲烷氘代碘甲烷碘乙烷1,2-二碘乙烷甲酸铷碘化铷溴化铷铬酸铷硫酸铷氟化铷硝酸铷氯化铷碳酸铷硫酸镱 碳酸镱氯化镱硝酸镱氧化镱等均有销售.欢迎订购
下一篇:西亚试剂:对人类胎儿的整个基因组测序



鲁ICP备20015914号-4