西亚试剂:Multiple Intravenous Administrations of Human Umbilical Cor
发布时间:2025-05-02
Multiple Intravenous Administrations of Human Umbilical Cord Blood Cells Benefit in a Mouse Model of ALS
Svitlana Garbuzova-Davis, Maria C. O. Rodrigues, Santhia Mirtyl, Shanna Turner, Shazia Mitha, Jasmine Sodhi, Subatha Suthakaran, David J. Eve, Cyndy D. Sanberg, Nicole Kuzmin-Nichols, Paul R. Sanberg
Background
A promising therapeutic strategy for amyotrophic lateral sclerosis (ALS) is the use of cell-based therapies that can protect motor neurons and thereby retard disease progression. We recently showed that a single large dose (25×106 cells) of mononuclear cells from human umbilical cord blood (MNC hUCB) administered intravenously to pre-symptomatic G93A SOD1 mice is optimal in delaying disease progression and increasing lifespan. However, this single high cell dose is impractical for clinical use. The aim of the present pre-clinical translation study was therefore to evaluate the effects of multiple low dose systemic injections of MNC hUCB cell into G93A SOD1 mice at different disease stages.
Methodology/Principal Findings
Mice received weekly intravenous injections of MNC hUCB or media. Symptomatic mice received 106 or 2.5×106 cells from 13 weeks of age. A third, pre-symptomatic, group received 106 cells from 9 weeks of age. Control groups were media-injected G93A and mice carrying the normal hSOD1 gene. Motor function tests and various assays determined cell effects. Administered cell distribution, motor neuron counts, and glial cell densities were analyzed in mouse spinal cords. Results showed that mice receiving 106 cells pre-symptomatically or 2.5×106 cells symptomatically significantly delayed functional deterioration, increased lifespan and had higher motor neuron counts than media mice. Astrocytes and microglia were significantly reduced in all cell-treated groups.
Conclusions/Significance
These results demonstrate that multiple injections of MNC hUCB cells, even beginning at the symptomatic disease stage, could benefit disease outcomes by protecting motor neurons from inflammatory effectors. This multiple cell infusion approach may promote future clinical studies.
- 以上资料由西亚试剂:http://www.xiyashiji.com/ 提供此产品的详细信息如密度,含量,分子式,分子量等均可在西亚官网查询
- 相关产品如汞乙酸汞氯化汞氧化汞碘化汞硫酸汞硝酸汞溴化汞硝酸亚汞氯化亚汞乙酸苯汞碘化汞钾硫氰酸汞氯化氨基汞三氯生三氯氧磷三氯乙烯水合氯醛三氯化磷三氯化钌三氯化钛三氯化铱三氯化铑三氯硫磷三氯乙烷三氯甲烷三氯卡班TCC1,3,5-三氯苯1,2,4-三氯苯1,2,3-三氯苯无水氯化铝三氯乙酸酐三氯乙酸钠碘甲烷二碘甲烷三碘甲烷 三氟碘甲烷硫酸二甲酯氯磺酸苯硫酚苯硫酚钠3-氨基苯硫酚2,6-二氯苯硫酚2,4-二氯苯硫酚2,5-二氯苯硫酚2-甲氧基苯硫酚2-氯乙醇 等均有销售.欢迎订购
上一篇:石墨烯新材料有望替代目前碳纤维材料
下一篇:人福医药拟出售乐福思集团40%股权