西亚试剂:Evaluation of Endothelial Cells Differentiated from Amnioti
发布时间:2025-06-08
Evaluation of Endothelial Cells Differentiated from Amniotic Fluid-Derived Stem Cells
Mr. Omar Martin Benavides, Miss Jennifer J Petsche, Dr. Kenneth J Moise, Dr. Anthony Johnson, and Dr. Jeff Jacot.
Amniotic fluid holds great promise as a stem cell source, especially in neonatal applications where autologous cells can be isolated and used. This study examined chemical-mediated differentiation of amniotic fluid-derived stem cells (AFSC) into endothelial cells and verified the function of AFSC-derived endothelial cells (AFSC-EC). AFSC were isolated from amniotic fluid obtained from second trimester amnioreduction as part of therapeutic intervention from pregnancies affected with twin-twin transfusion syndrome. Undifferentiated AFSC were of normal karyotype with a subpopulation of cells positive for the embryonic stem cell marker SSEA4, hematopoietic stem cell marker c-kit, and mesenchymal stem cell markers CD29, CD44, CD73, CD90, and CD105. Additionally, these cells were negative for the endothelial marker CD31 and hematopoietic differentiation marker CD45. AFSC were cultured in endothelial growth media with concentrations of vascular endothelial growth factor (VEGF) ranging from 1 to 100 ng/ml. After 2 weeks, AFSC-EC expressed von Willebrand factor, endothelial nitric oxide synthase, CD31, VE-cadherin, and VEGF receptor 2. Additionally, the percentage of cells expressing CD31 was positively correlated with VEGF concentration up to 50 ng/ml, with no increase at higher concentrations. AFSC-EC showed a decrease in stem cells markers c-kit and SSEA4 and were morphologically similar to human umbilical vein endothelial cells (HUVEC). In functional assays, AFSC-EC formed networks and metabolized acetylated low-density lipoprotein, also characteristic of HUVEC. Nitrate levels for AFSC-EC, an indirect measure of nitric oxide synthesis, were significantly higher than undifferentiated controls and significantly lower than HUVEC. These results indicate that AFSC can differentiate into functional endothelial-like cells and may have the potential to provide vascularization for constructs used in regenerative medicine strategies.
- 以上资料由西亚试剂:http://www.xiyashiji.com/ 提供此产品的详细信息如密度,含量,分子式,分子量等均可在西亚官网查询
- 相关产品如汞乙酸汞氯化汞氧化汞碘化汞硫酸汞硝酸汞溴化汞硝酸亚汞氯化亚汞乙酸苯汞碘化汞钾硫氰酸汞氯化氨基汞三氯生三氯氧磷三氯乙烯水合氯醛三氯化磷三氯化钌三氯化钛三氯化铱三氯化铑三氯硫磷三氯乙烷三氯甲烷三氯卡班TCC1,3,5-三氯苯1,2,4-三氯苯1,2,3-三氯苯无水氯化铝三氯乙酸酐三氯乙酸钠碘甲烷二碘甲烷三碘甲烷 三氟碘甲烷硫酸二甲酯氯磺酸苯硫酚苯硫酚钠3-氨基苯硫酚2,6-二氯苯硫酚2,4-二氯苯硫酚2,5-二氯苯硫酚2-甲氧基苯硫酚2-氯乙醇 等均有销售.欢迎订购
上一篇:西亚试剂:Paf1诱导基因沉默
下一篇:西亚试剂 :N-甲基-9-吖啶酮