西亚试剂:Maternal imprinting at the H19–Igf2 locus maintains adult h
发布时间:2025-07-18
Maternal imprinting at the H19–Igf2 locus maintains adult haematopoietic stem cell quiescence
Aparna Venkatraman, Xi C. He, Joanne L. Thorvaldsen,Ryohichi Sugimura, John M. Perry, Fang Tao,Meng Zhao,Matthew K. Christenson, Rebeca Sanchez, Jaclyn Y. Yu,Lai Peng, Jeffrey S. Haug,Ariel Paulson, Hua Li,Xiao-bo Zhong,Thomas L. Clemens,Marisa S. Bartolomei & Linheng Li
The epigenetic regulation of imprinted genes by monoallelic DNA methylation of either maternal or paternal alleles is critical for embryonic growth and development. Imprinted genes were recently shown to be expressed in mammalian adult stem cells to support self-renewal of neural and lung stem cells; however, a role for imprinting per se in adult stem cells remains elusive. Here we show upregulation of growth-restricting imprinted genes, including in the H19–Igf2 locus, in long-term haematopoietic stem cells and their downregulation upon haematopoietic stem cell activation and proliferation. A differentially methylated region upstream of H19 (H19-DMR), serving as the imprinting control region, determines the reciprocal expression of H19 from the maternal allele and Igf2 from the paternal allele. In addition, H19 serves as a source of miR-675, which restricts Igf1r expression. We demonstrate that conditional deletion of the maternal but not the paternal H19-DMR reduces adult haematopoietic stem cell quiescence, a state required for long-term maintenance of haematopoietic stem cells, and compromises haematopoietic stem cell function. Maternal-specific H19-DMR deletion results in activation of the Igf2–Igfr1 pathway, as shown by the translocation of phosphorylated FoxO3 (an inactive form) from nucleus to cytoplasm and the release of FoxO3-mediated cell cycle arrest, thus leading to increased activation, proliferation and eventual exhaustion of haematopoietic stem cells. Mechanistically, maternal-specific H19-DMR deletion leads to Igf2 upregulation and increased translation of Igf1r, which is normally suppressed by H19-derived miR-675. Similarly, genetic inactivation of Igf1r partly rescues the H19-DMR deletion Our work establishes a new role for this unique form of epigenetic control at the H19–Igf2 locus in maintaining adult stem cells
- 以上资料由西亚试剂:http://www.xiyashiji.com/ 提供此产品的详细信息如密度,含量,分子式,分子量等均可在西亚官网查询
- 相关产品如诺卡氏菌液(-)-樟脑神经鞘磷脂,从牛脑所得 杨梅苷愈创奥IAPN-叔丁基苯硫腈氯化物4-溴苯基五氟化硫色胺盐酸盐4-溴噻吩-2-甲醛纤维素粉 7-(二甲基氨基)-4-三氟甲基香豆素邻硝基苯肼盐酸盐3,3'-二氨基联苯胺四盐酸盐水合物美伐他汀丁卡因阿卡明全氟辛基季胺碘化物布西拉明硫酸多粘菌素B益母草浸膏黄苓干膏 L-2,3-二氨基丙酸盐酸盐黄糊精EB替代品(GoldView)等均有销售.欢迎订购
下一篇:西亚试剂:DNA条形码技术有助贝类多样性研究