欢迎访问西亚试剂!
西亚试剂banner
西亚试剂banner
西亚试剂banner

当前位置:首页 > 新闻中心

西亚试剂:Induced pluripotent stem cells from a spinal muscular atrop

发布时间:2025-05-09

Induced pluripotent stem cells from a spinal muscular atrophy patient

Allison D. Ebert1,2, Junying Yu3, Ferrill F. Rose, Jr4, Virginia B. Mattis4, Christian L. Lorson4, James A. Thomson2,3,5 & Clive N. Svendsen1,2,5,6

1 The Waisman Center, and,
2 The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
3 The Genome Center and Wisconsin National Primate Research Center, University of Wisconsin-Madison, 425 Henry Mall, Madison, Wisconsin 53706, USA
4 Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, 1201 Rollins Road, Columbia, Missouri 65211, USA
5 Department of Anatomy, University of Wisconsin-Madison, 1300 University Avenue Madison, Wisconsin 53706, USA
6 Department of Neurology, University of Wisconsin-Madison, 600 North Highland Avenue, Madison, Wisconsin 53792, USA

Spinal muscular atrophy is one of the most common inherited forms of neurological disease leading to infant mortality. Patients have selective loss of lower motor neurons resulting in muscle weakness, paralysis and often death. Although patient fibroblasts have been used extensively to study spinal muscular atrophy, motor neurons have a unique anatomy and physiology which may underlie their vulnerability to the disease process. Here we report the generation of induced pluripotent stem cells from skin fibroblast samples taken from a child with spinal muscular atrophy. These cells expanded robustly in culture, maintained the disease genotype and generated motor neurons that showed selective deficits compared to those derived from the child's unaffected mother. This is the first study to show that human induced pluripotent stem cells can be used to model the specific pathology seen in a genetically inherited disease. As such, it represents a promising resource to study disease mechanisms, screen new drug compounds and develop new therapies.

 

 

上一篇:葛洲坝赛诺(日照)环境科技有限公司投产
下一篇:清除累积的蛋白质让神经干细胞保持年轻
版权所有:山东西亚化学有限公司

鲁ICP备20015914号-4