西亚试剂:Mechanics of Channel Gating of the Nicotinic Acetylcholine
发布时间:2025-08-05
Mechanics of Channel Gating of the Nicotinic Acetylcholine Receptor
1 Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning, China, 2 Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China, 3 School of Pharmacy, East China University of Science and Technology, Shanghai, China, 4 UNESCO Chair of Biophysics & Molecular Neurobiology and Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca, Argentina
The nicotinic acetylcholine receptor (nAChR) is a key molecule involved in the propagation of signals in the central nervous system and peripheral synapses. Although numerous computational and experimental studies have been performed on this receptor, the structural dynamics of the receptor underlying the gating mechanism is still unclear. To address the mechanical fundamentals of nAChR gating, both conventional molecular dynamics (CMD) and steered rotation molecular dynamics (SRMD) simulations have been conducted on the cryo-electron microscopy (cryo-EM) structure of nAChR embedded in a dipalmitoylphosphatidylcholine (DPPC) bilayer and water molecules. A 30-ns CMD simulation revealed a collective motion amongst C-loops, M1, and M2 helices. The inward movement of C-loops accompanying the shrinking of acetylcholine (ACh) binding pockets induced an inward and upward motion of the outer β-sheet composed of β9 and β10 strands, which in turn causes M1 and M2 to undergo anticlockwise motions around the pore axis. Rotational motion of the entire receptor around the pore axis and twisting motions among extracellular (EC), transmembrane (TM), and intracellular MA domains were also detected by the CMD simulation. Moreover, M2 helices undergo a local twisting motion synthesized by their bending vibration and rotation. The hinge of either twisting motion or bending vibration is located at the middle of M2, possibly the gate of the receptor. A complementary twisting-to-open motion throughout the receptor was detected by a normal mode analysis (NMA). To mimic the pulsive action of ACh binding, nonequilibrium MD simulations were performed by using the SRMD method developed in one of our laboratories. The result confirmed all the motions derived from the CMD simulation and NMA. In addition, the SRMD simulation indicated that the channel may undergo an open-close (O C) motion. The present MD simulations explore the structural dynamics of the receptor under its gating process and provide a new insight into the gating mechanism of nAChR at the atomic level.
Figure 2.Collective Motions of the C-Loops, M1, and M2 Helices
(A) The time-dependence of the volumes of ACh binding pockets. Black and red curves represent type-I (α1-γ) and type-II (α2-δ) pockets, respectively.
(B) The motion tendencies of C-loops, M1, and M2 reflected by the superposition of subunit α1 at the beginning (green) and after 30 ns simulation (cyan). The picture is displayed parallel to the pore axis.
(C–D) The anticlockwise motions of the M1 and M2 helices. The superpositions are based on the centers of mass of the five M1 and M2 helices, respectively, and the pictures are viewed from the synaptic cleft.
From: Mechanics of Channel Gating of the Nicotinic Acetylcholine Receptor Liu X, Xu Y, Li H, Wang X, Jiang H, et al. PLoS Computational Biology Vol. 4, No. 1, e19 doi:10.1371/journal.pcbi.0040019
- 以上资料由西亚试剂:http://www.xiyashiji.com/ 提供此产品的详细信息如密度,含量,分子式,分子量等均可在西亚官网查询
- 相关产品如汞乙酸汞氯化汞氧化汞碘化汞硫酸汞硝酸汞溴化汞硝酸亚汞氯化亚汞乙酸苯汞碘化汞钾硫氰酸汞氯化氨基汞三氯生三氯氧磷三氯乙烯水合氯醛三氯化磷三氯化钌三氯化钛三氯化铱三氯化铑三氯硫磷三氯乙烷三氯甲烷三氯卡班TCC1,3,5-三氯苯1,2,4-三氯苯1,2,3-三氯苯无水氯化铝三氯乙酸酐三氯乙酸钠碘甲烷二碘甲烷三碘甲烷 三氟碘甲烷硫酸二甲酯氯磺酸苯硫酚苯硫酚钠3-氨基苯硫酚2,6-二氯苯硫酚2,4-二氯苯硫酚2,5-二氯苯硫酚2-甲氧基苯硫酚2-氯乙醇 等均有销售.欢迎订购
上一篇:新能源汽车电池已经过渡到供大于求的买方市场
下一篇:西亚试剂: 现代人类祖先“走出非洲”的原因有新解