西亚试剂:Novel Roles of Formin mDia2 in Lamellipodia and Filopodia F
发布时间:2025-08-08
Abstract
Actin polymerization-driven protrusion of the leading edge is a key element of cell motility. The important actin nucleators formins and the Arp2/3 complex are believed to have nonoverlapping functions in inducing actin filament bundles in filopodia and dendritic networks in lamellipodia, respectively. We tested this idea by investigating the role of mDia2 formin in leading-edge protrusion by loss-of-function and gain-of-function approaches. Unexpectedly, mDia2 depletion by short interfering RNA (siRNA) severely inhibited lamellipodia. Structural analysis of the actin network in the few remaining lamellipodia suggested an mDia2 role in generation of long filaments. Consistently, constitutively active mDia2 (ΔGBD-mDia2) induced accumulation of long actin filaments in lamellipodia and increased persistence of lamellipodial protrusion. Depletion of mDia2 also inhibited filopodia, whereas expression of ΔGBD-mDia2 promoted their formation. Correlative light and electron microscopy showed that ΔGBD-mDia2–induced filopodia were formed from lamellipodial network through gradual convergence of long lamellipodial filaments into bundles. Efficient filopodia induction required mDia2 targeting to the membrane, likely through a scaffolding protein Abi1. Furthermore, mDia2 and Abi1 interacted through the N-terminal regulatory sequences of mDia2 and the SH3-containing Abi1 sequences. We propose that mDia2 plays an important role in formation of lamellipodia by nucleating and/or protecting from capping lamellipodial actin filaments, which subsequently exhibit high tendency to converge into filopodia.
Author Summary
Cell motility is a cyclic process, with the protrusion of the leading edge followed by retraction of the rear. Protrusion is driven by polymerization of actin filaments, with the spatial organization of these filaments determining the shape of the protrusions. For example, the spike-like filopodia contain bundles of long actin filaments, whereas the sheet-like lamellipodia contain branched actin networks. In biochemical assays, two stimulators of actin polymerization, Arp2/3 complex and formins, induce branched or individual filaments, respectively. In cells, Arp2/3 complex and formins also appear to be implicated in the formation of lamellipodia and filopodia, respectively. However, when we investigated the role of mDia2 formin by functional approaches, we unexpectedly found that it is essential, not only for filopodia, but also for lamellipodia. Moreover, functions of mDia2 in lamellipodia and filopodia appeared intimately linked. We recorded behavior of cells by light microscopy and then used electron microscopy to study actin architecture in the same cells. We found that an activated form of mDia2 was first recruited to lamellipodia, where it induced many long, unbranched filaments, and from there, drove formation of filopodia through gradual convergence of these lamellipodial filaments into bundles. These data demonstrate a strong relationship between structurally different actin filament arrays and molecular machineries involved in their formation.
Figures
- 以上资料由西亚试剂:http://www.xiyashiji.com/ 提供此产品的详细信息如密度,含量,分子式,分子量等均可在西亚官网查询
- 相关产品如汞乙酸汞氯化汞氧化汞碘化汞硫酸汞硝酸汞溴化汞硝酸亚汞氯化亚汞乙酸苯汞碘化汞钾硫氰酸汞氯化氨基汞三氯生三氯氧磷三氯乙烯水合氯醛三氯化磷三氯化钌三氯化钛三氯化铱三氯化铑三氯硫磷三氯乙烷三氯甲烷三氯卡班TCC1,3,5-三氯苯1,2,4-三氯苯1,2,3-三氯苯无水氯化铝三氯乙酸酐三氯乙酸钠碘甲烷二碘甲烷三碘甲烷 三氟碘甲烷硫酸二甲酯氯磺酸苯硫酚苯硫酚钠3-氨基苯硫酚2,6-二氯苯硫酚2,4-二氯苯硫酚2,5-二氯苯硫酚2-甲氧基苯硫酚2-氯乙醇 等均有销售.欢迎订购
上一篇:西亚试剂::Purification of PCR fragments for cloning
下一篇:西亚试剂:Structure of an Rrp6–RNA exosome complex bound to poly(A) R