西亚试剂:The DNA-encoded nucleosome organization of a eukaryotic gen
发布时间:2025-10-19
The DNA-encoded nucleosome organization of a eukaryotic genome
Noam Kaplan1,9, Irene K. Moore3,9, Yvonne Fondufe-Mittendorf3, Andrea J. Gossett4, Desiree Tillo5, Yair Field1, Emily M. LeProust6, Timothy R. Hughes5,7,8, Jason D. Lieb4, Jonathan Widom3 & Eran Segal1,2
1 Department of Computer Science and Applied Mathematics,
2 Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
3 Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2153 Sheridan Road, Evanston, Illinois 60208, USA
4 Department of Biology, Carolina Center for Genome Sciences, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
5 Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
6 Agilent Technologies Inc., Genomics—LSSU, 5301 Stevens Creek Boulevard, MS 3L/MT Santa Clara, California 95051, USA
7 Terrence Donnelly Centre for Cellular & Biomolecular Research,
8 Banting and Best Department of Medical Research, 160 College Street, Toronto, Ontario M5S 3E1, Canada
9 These authors contributed equally to this work.
Correspondence to: Jonathan Widom3Eran Segal1,2 Correspondence and requests for materials should be addressed to J.W. & E.S.
Nucleosome organization is critical for gene regulation1. In living cells this organization is determined by multiple factors, including the action of chromatin remodellers2, competition with site-specific DNA-binding proteins3, and the DNA sequence preferences of the nucleosomes themselves4, 5, 6, 7, 8. However, it has been difficult to estimate the relative importance of each of these mechanisms in vivo 7, 9, 10, 11, because in vivo nucleosome maps reflect the combined action of all influencing factors. Here we determine the importance of nucleosome DNA sequence preferences experimentally by measuring the genome-wide occupancy of nucleosomes assembled on purified yeast genomic DNA. The resulting map, in which nucleosome occupancy is governed only by the intrinsic sequence preferences of nucleosomes, is similar to in vivo nucleosome maps generated in three different growth conditions. In vitro, nucleosome depletion is evident at many transcription factor binding sites and around gene start and end sites, indicating that nucleosome depletion at these sites in vivo is partly encoded in the genome. We confirm these results with a micrococcal nuclease-independent experiment that measures the relative affinity of nucleosomes for 40,000 double-stranded 150-base-pair oligonucleotides. Using our in vitro data, we devise a computational model of nucleosome sequence preferences that is significantly correlated with in vivo nucleosome occupancy in Caenorhabditis elegans. Our results indicate that the intrinsic DNA sequence preferences of nucleosomes have a central role in determining the organization of nucleosomes in vivo.
- 以上资料由西亚试剂:http://www.xiyashiji.com/ 提供此产品的详细信息如密度,含量,分子式,分子量等均可在西亚官网查询
- 相关产品如汞乙酸汞氯化汞氧化汞碘化汞硫酸汞硝酸汞溴化汞硝酸亚汞氯化亚汞乙酸苯汞碘化汞钾硫氰酸汞氯化氨基汞三氯生三氯氧磷三氯乙烯水合氯醛三氯化磷三氯化钌三氯化钛三氯化铱三氯化铑三氯硫磷三氯乙烷三氯甲烷三氯卡班TCC1,3,5-三氯苯1,2,4-三氯苯1,2,3-三氯苯无水氯化铝三氯乙酸酐三氯乙酸钠碘甲烷二碘甲烷三碘甲烷 三氟碘甲烷硫酸二甲酯氯磺酸苯硫酚苯硫酚钠3-氨基苯硫酚2,6-二氯苯硫酚2,4-二氯苯硫酚2,5-二氯苯硫酚2-甲氧基苯硫酚2-氯乙醇 等均有销售.欢迎订购
上一篇:西亚试剂:Identification of Polyoxometalates as Nanomolar Noncompetit
下一篇:西亚试剂:Optical control demonstrates switch-like PIP3 dynamics unde



鲁ICP备20015914号-4